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Abstract: Aziridinyllithiums 4a and 4b, which are stable at low temperature, can be generated by
deprotonation of 3a and 3b. Oxazolinyl aziridines 5a—j and 6a—-b have been prepared by the
reaction of oxazolinyl aziridinyllithiums 4a and 4b with electrophiles. Aziridines 6¢ and 6d were,
instead, synthesized by a Darzens-like reaction from 2-(1-chloroethyl)-2-oxazoline 1b.
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Aziridines, of considerable interest in the field of natural products [1,2], are versatile
synthetic intermediates. Many preparative methods for aziridines involve two component
reactions [1], such as the aza-Darzens reaction [3], the intermediacy of carbenes [4] and ylides
[5], and the 1,2-dihalide route [6]. Aziridinyl anions, which were not widely known and studied
until a few years ago [7], have rarely been used as key intermediates for the synthesis of more
complex aziridines, possibly due to the difficulty of their generation and trapping with
electrophiles. Stabilized aziridinyl anions can be generated by deprotonation [3a,8—13], the
nonstabilized ones by desulfinylation [3b,14], desilylation [15], destannylation [16] and even
by deprotonation via preliminary Lewis acid activation [17].

Oxazolinylaziridines seem to be useful intermediates in synthetic organic chemistry as the
oxazolinyl and the aziridinyl groups are amenable to numerous synthetic transformations. In
the present paper we report a simple and convenient route to oxazolinylaziridines based on the
deprotonation-alkylation of simpler oxazolinyl aziridines.

Treatment of 2-chloromethyl-4,4-dimethyl-2-oxazoline 1a [18a—c] (Scheme 1) with LDA in
THF at —78 °C followed by the immediate addition of the Schiff base 2a afforded aziridine 3a.
Lithiation of 3a (n-BuLi, THF, —78 °C) resulted in the formation of the aziridinyllithium 4a
that was stable at —78 °C and could be converted back to its precursor 3a upon quenching with
aq. NH4Cl. Moreover, the reaction of 4a with D2O gave deuterated aziridine Sa almost
quantitatively. The stability and the usefulness of aziridinyllithium 4a could also be proved by
its trapping with a number of electrophiles to give functionalized aziridines Sb-e. Aziridine 5b
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could be also prepared from lithiated 2-(1-chloroethyl)-4,4-dimethyl-2-oxazoline 1b [19] and
imine 2a (55 % yield).

Scheme 1
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In a similar way, lithiation of 1a (LDA, -78 °C, THF) followed by quenching with imine 2b
produced aziridine 3b. Treatment of 3b with n-BuLi (1 eq., THF, -78 °C) generated
aziridinyllithium 4b that reacted cleanly with Mel and Me3SiCl to give 6a [20] and 6b,
respectively (Scheme 2).

Scheme 2
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The reaction of 4a with aldehydes turned out to be completely anti diastereoselective.
Indeed, the reaction of 4a with benzaldehyde led to the hydroxyalkyl aziridine 5f, which was
assigned the anti configuration [21] on the basis of the AB system found for the two geminal
protons of the oxazoline ring combined with a large chemical shift difference (Av = 0.51 ppm)
for the two oxazoline methyl groups by analogy with what had been found in the case of
oxazolinyl hydroxyalkyl oxiranes [22]. Equally anti diastereoselective were the reactions of 4a
with other aromatic aldehydes giving hydroxyalkyl aziridines Sg-i. It is, however, noteworthy
that the deprotonation-alkylation of oxazolinyl oxiranes had been found to be
nonstereoselective [22]. Much less anti diastereoselective was the reaction of 4a with
acetaldehyde (anti/syn ratio = 2/1). The diastereomers 5j could, however, be easily separated by
column chromatography and assigned configurations on the basis of the chemical shifts of the
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methyne protons on the hydroxy-bearing carbon atoms. Such a methyne proton in the syn
isomer resides at lower field with respect to the anti isomer, as reported for similar
hydroxyalkyl aziridines [23].

It was not possible to couple lithiated 1a with imines derived from aromatic aldehydes or
ketones as homocoupling with its precursor 1a giving the trans-dioxazolinyl ethene 7, after
elimination, largely prevailed [18a].

Aziridine 6¢ (Scheme 3), however, could be prepared in a highly diastereoselective manner
(E/Z=94 / 6) [24a] via the Darzens reaction of 1b with imine 2c.
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In a similar way aziridine 6d could be prepared (Scheme 4). Indeed, lithiated 1b is stable for
at least 1 h at low temperature and reacts with imine 2d to furnish the tetrasubstituted aziridine
trans-6d stereoselectively [24b, 25].
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In conclusion, we have reported here a simple synthesis of functionalized aziridines
based on lithiation-alkylation of simple easily available aziridines. As mentioned
above, the utility of oxazolinyl aziridines resides in the fact that both the oxazolinyl (a
well known masked carbonyl function) and aziridinyl groups can be synthetically
elaborated. More work is in progress in our lab to this end.
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